
Practical hints and tips to enhance service management.

James Gander

Visit www.freshservice.com for the latest in the world of ITSM.

The
No-nonsense Guide

to ITSM

Table of Contents

High call volumes following a change

Repetitive calls received for the same issue

Ensuring resolution within SLA

Breaking information silos within teams

3

9

13

20

2

Practical tips to enhance service management

Problems being experienced

If you are relatively new to running an IT operations team or a service desk, you are

likely to come across the same things that every other person in a similar role has

experienced. From wondering how to cope with the volume and types of calls to trying

to understand the changes that need to be made and how. When faced with the

pressures of your day to day job, it can be extremely daunting to think beyond the next

issue.

I have tried to identify four of the most common issues that managers and team leaders

experience at the pointy end of IT, and hopefully have managed to provide some tips

and best practices on the optimum way forward.

Some of the most common issues experienced by managers and leaders in IT are:

My aim here is for you to understand that you are not alone, and be able to pull together

your own plans to address these issues so you can feel more comfortable in your

day-to-day improvements.

High call volumes following a change,

Multiple redundant calls received for the same issue,

Ensuring resolution within agreed service levels (SLA), and

Breaking information silos within teams.

High call volumes
following a change

Those on the service desk or on-call, dread those moments when the phone starts

ringing o� the hook (if that still happens) for no apparent reason. End users are

complaining that they are no longer able to access something or run a particular

application. So what has gone wrong?

Sometimes this can reach a point when the team doesn’t even have time to look into

the issue as they are stuck tending to one call a�er the other for the same issue –

leading to increased stress among the team members. How do you handle it?

In some ways, speaking like a true consultant, it depends on the size of your

organization and the maturity of your work processes. If you are a team of 4 people in

the same room, then identifying the potential cause of the issue comes down to the

team turning to each other to ask if anyone has done something. If everyone present

doesn’t have anything to add to that, then it is either a failure, or the person who does

have knowledge about the issue isn’t in yet.

However, if you are part of a larger team across multiple sites with mature processes,

then you might check the change calendar, identify if any of the implemented changes

may have had this e�ect, and contact the relevant technician. Of course, there are

many options in between – including unapproved changes which even the most mature

of organizations have to contend with occasionally.

At this point, however, you primarily have the following tasks to carry out:

4

Handle the current situation

Communicate to the users

Plan a fix

5

Handling the current situation is relatively simple. Unless it is email that is down, send

out an email notification to those a�ected. I suggest email because in most

organizations, it is the most widely accessible form of broadcasting information to IT

users. The email could be to particular departments, sites, teams, or everyone. Tell

them that you are aware of the issue, that the appropriate teams are investigating, and

set expectations on when you will provide an update. Every 30 minutes is good to start

with, but if it looks like it will go on for hours, make it hourly or whenever it’s possible

from your end. This may not be the whole truth, but it won’t be far o�. Users who know

that you are dealing with the issue are less likely to harangue you with calls, and more

likely to accept the outage. Of course, you won’t get everyone but if you can cut phone

calls by 75-80%, it does a lot for reducing stress levels.

If email is down, this can be trickier. Experience tells me that it is always worth having

an alternative method of communicating with users. One of the simplest methods is to

have a list of key people in each site/ department/ team and their phone number. If the

SD manager/ SDM/ IT manager has an SMS group on their mobile phone, they can easily

send out updates requesting to communicate about the outage with their teams and

those in their vicinity. However, there are a multitude of options, and some of you might

prefer corporate approaches. Maybe you have an intranet that everyone actually uses,

checks regularly and considers as the first port of call for any updates. Maybe you have

a great service management portal, and all your users look to the portal, by default, for

communication updates, or you use a third-party tool for communication. Whatever it

is, make sure you don’t rely on just one method to broadcast information to users.

6

Planning the fix will depend on many di�erent things. It can be as simple as having the

technician who implemented the change look at it and say, “Whoops, my mistake. I

know what I did there. Give me two minutes,” and the change request is updated

accordingly and everyone is happy. Alternatively, no one may have a clue as to what is

happening. The change tested successfully, the implementation went according to

plan, so ideally, nothing should be causing an issue.

If you are at this point, it is time to raise the question, “Can we rollback the change?” If

so, plan for it only if the fix cannot be implemented within a reasonable time-frame and

it is safe to do so. If not, then you will need to start to document something like the

following:

Start to narrow it down. There will probably be a multitude of options from the

technical teams as to what the issue is, or might be. There will also be strong feelings

about why something cannot be the cause. Mapping them all out on a whiteboard or

screen where everyone can see them is a good way to drill down the issue. This exercise

needs to be completely unbiased and non-judgmental.

What are the symptoms?

What is di�erent to normal?

Can the issue be reproduced? If so, how?

Is everyone experiencing the issue? Is it the same issue?

7

We should always work in a blame-free environment that encourages people to safely

try di�erent approaches to work, as that is what helps drive improvements, but reality

tells us that some organizations don’t work like that. If you have an option and the

consensus is that it can’t be the issue, ask why until all the options have been

disproven. Then, move on to the next.

For your teams, communication is imperative. The service desk, dealing groups and

service delivery manager/ service owner need to know who is doing what, when, and

why. Those working on fixes need to know who to update and when. This may be the

major incident manager, the service desk or the service owner. It doesn’t really matter,

as each organization is di�erent and there is no right answer. However, knowing who is

doing what and when saves time, stress, reworking and looking stupid in front of

users.

Once you have identified the fix, don’t jump into it. Likewise, don’t allow others to be

trying things while you investigate. If that happens, you will have no idea what the

cause was and what the fix was. You now need to consider whether your fix will impact

anything else. Do you need an outage of another part of the system? When can that be

done? All this will need to be communicated to your users again.

Communication between teams and the users is vital. For users, you should set

expectations that you will provide them with hourly updates, and make sure that

happens. Make it somebody’s responsibility to do that, and somebody else’s to check

that it happens. You only need to tell users what the issue is, and whether you have fixed

it yet. They don’t need details. Try and use the same format of email each time so that

users don’t have to read paragraphs to get the information. If possible, try tables with

single sentence updates.

8

But how do you stop these types of issues? In short, you can’t completely stop them.

There will always be the unknown. However, there are certain things that you can do to

mitigate the chance of it happening. A change management process of some

description will help. It doesn’t need to be a heavy process. It just needs to fit your

organization. Maybe, every change to do with servers and networks has to be logged.

Maybe, they all need to be reviewed by the team leader. Maybe, once they have been

done 5 times successfully, they are classed as pre-approved and they only need to be

recorded. Maybe, you have a tool that will allow them to be automatically tested. Or

maybe, that can be integrated and the whole change is automated. The less human

interaction, the lower the chances of something going wrong. So, if an application is

updated, the test team (if you have one) could look to automate an end-to-end test plan

for the application. This would ensure that every component used to deliver the service

works with the update. This could be used by the application team even before they

raise the change, and if the results can be easily shared, the change becomes

pre-approved, assuming the tests were successful. If that is too much for your

organization, maybe a test plan could be written, reviewed, and signed o� by all teams

(apps, infrastructure, DBA, networks, the business teams, etc.) that can be centrally

stored, and followed by everyone involved in making any change that a�ects services.

Then, if something changes to a service, the centrally managed test plan is

automatically updated, and everyone knows they are covered (hopefully).

9

Repetitive calls received for
the same issue

We all know of those endless streams of calls where, over the course of a week or

month, you receive multiple calls for the same issue. Or worse, maybe you aren’t aware

of the fact that you are handling many calls for the same issue. What do you do?

Well, if you aren’t aware, then you could look at the way you are categorizing calls. I’m

a big fan of keeping the number of categories short, but using sub-categories to help

clarification. For example you might have application, email, calendar, or desktop, OS,

Win10, or communication, VC, and cabling. Whatever you have, needs to work for you

and your setup, but it also has to be easy for the guys at the pointy end of support to be

able to understand so they can help quickly. It also should be replicated when you

resolve a call. Occasionally, what you thought the issue to be, when logging it, might be

di�erent to what the issue was. And there is no point in reporting on what you thought

the issue was, but what it actually was. That said, if you have people constantly entering

the incorrect categorization initially, there may be a need for training because either

they don’t understand the issue, or the issue wasn’t communicated properly to them.

Once you gather the correct information, you need to report on it. This will identify

trends, some of which are acceptable and some that will be a cause for review. You may

see that 30% of your calls were to do with a particular application, but not about any

particular issue. Do you need to investigate further? Maybe not. You may see that 30%

are password resets. Should you do something about that? Probably, yes. It may be

worth investigating a self-service platform that enables users to reset their own

passwords. However, funding to implement self-service will need additional work.

10

What does it cost for the service desk to handle all of those password resets? How long

is a user “o�-line” while waiting? What is the number of out-of-hours calls for password

resets? What would it cost to fully implement a self-service solution? Not just buy it, but

implement, integrate, communicate and train users and support sta�. There are

multiple hidden costs that can cause future trust issues if they aren’t identified and

understood initially when requesting funding. How long will it take? Does the CIO

expect a reduction in password resets within 1 month of sign-o� or 6 months? All of this

need to be considered before beginning process for funding.

Your reports to understand what is happening will probably need to be looked into over

a period of 1-3 months before you identify any meaningful trends. Sometimes, this can

take longer. It is highly likely that you will have anomalies every so o�en, where a peak

in calls will skew your metrics. Maybe you had just released new functionality in an

application and for 2 days your calls went up. Is that a cause for concern? In the long

term, maybe not, but it may identify a failing in the project delivery. Was there enough

training or communication? Should there be more super-users walking the floor in the

future? Or was it really just one of those things that everyone knew would happen

because that team needs special treatment?

Once you have your metrics and you have identified a few pain points, you will need to

prioritize the work and understand the actions required. Are the actionable tasks

something that you and your team can do on your own, or do they need support or

involvement from others? If you can handle it internally, then work out when it should

be done, and allocate time accordingly. If you feel that you need to address the issue by

the end of the month, get it done.

11

Do you need to take somebody o� the desk for one day a week to achieve it? Then do it.

If you need involvement from another team, you may need to sell the idea to them.

Does the service owner or product owner need to add the idea to their improvement

plan or backlog? Does the infrastructure team need to allocate someone to work with

you on the resolution? Do you “just” need documentation from somebody? That may

require a couple of hours, twice a week with somebody to write, review, categorize or

tag, store and communicate.

This can be seen as problem management and in some instances, it is. You could have

the problem manager co-ordinate the work that needs to be done by multiple teams. Or

maybe you have service owners and they will do this in order to reduce call volumes for

their services. However you do it, where there is cross-team collaboration required, you

need buy-in. Maybe this is a great opportunity to implement virtual teams, who work

together to drive improvements in small sprints. If that works well, why not keep that

team as a team that supports the particular service? You are taking your first steps

towards a DevOps set-up. The team could work through a list of improvements that are

broken into smaller manageable chunks which are then prioritized by an owner.

12

Ensuring resolution
within SLA

14

SLAs. Service Level Agreements. The bane of every support person’s life. Are they

needed, and if so, are they defined and agreed upon in a sensible manner? It is highly

probable that either somebody within the wider business made a decision that

“priority X” calls would be responded to within “Y minutes” and resolved within “Z

minutes.” It may also have been agreed that systems won’t be unavailable for more

than “ABC minutes” a month or year. How realistic are these numbers? If the wider

business didn’t dictate the service levels, then maybe someone in IT said that they

should be “this” because that is easily achievable and the users complain about it

taking too long to get anything done.

Let’s assume that within your organization, SLAs have been set as required. We are

talking about internal service providers (IT departments) here, but external service

providers are not that di�erent; they just charge “real” money rather than internal

costs. How can you be sure that you can provide solutions within SLA? Well firstly, let’s

remind ourselves that SLA stands for Service Level Agreement, so it is an agreed level of

service which will be provided. Agreed. So what should ideally happen for a service is

that the service provider sits with the service customer and agrees on the service level.

The customer will want X and the provider will want to provide Z. Hopefully, they can

agree on Y. This negotiation for a brand new service in a traditional IT environment will

go something like:

Customer: I’d like the service to be available 24*7 and all calls to be responded

to within 10 minutes, and resolved within 20 minutes.

15

Provider: Okay. To do that, we need to design the whole solution to be resilient

with no single points of failure and hot standby infrastructure in a secondary

data centre. That will cost three times the current budget. To respond to and

resolve all calls, no matter what they are, within said timeframes will require

investment in these tools, training and additional people at a cost of x. Can you

sign the CAPEX o�, and ensure that increased OPEX costs are agreed for the

next 10 years please?

Customer: There’s no more money.

Provider: Then based on current budget I can provide…

There will be a bit more negotiation and some shaving here and there, but eventually

signed o� at a hopefully realistic agreed level of service for the available budget.

If a DevOps setup is in place, then some areas will change in the discussion, some might

be able to deliver more and quicker for lesser costs, but fundamentally, if the

investment isn’t in place, there is only so much that you can do.

Now, we all know that in the real world, the above is unlikely to have taken place. So

people will expect you to occasionally pull one out of the bag. And you will because IT

always does, but it leads to expectations being greater.

Firstly, let’s accept that it just won’t be possible to always deliver within SLA. Even if the

SLAs are realistic and have been designed to be achievable, things happen and get in

the way, stopping you from delivering what is wanted all the time.

16

If you are an internal service provider, that may not be a big deal, unless you are

constantly failing to deliver within the SLA. Then, conversations around outsourcing

may raise their heads. That’s a separate conversation. If you are an external service

provider, I would like to think that contracts are not brought up whenever you are

perceived to have failed to deliver. I would like to think that you are having grown up

conversations with the customer explaining what happened, why and what is being

done to mitigate the chances of this happening again. Those same conversations

should be happening for internal service providers as well. You’re all in the same boat.

So how do you really provide solutions within SLA?

When managing incidents, you need to have visibility to be able to remove the chances

of incidents, or to be able to restore service within SLAs. The two most obvious methods

of doing this are monitoring and knowledge.

Monitoring

If you are e�ectively monitoring your services, you should be able to identify and

address most of the issues before the users are aware of them. Alerted about low disk

space on your storage? You can do something about that BEFORE it becomes an issue.

Or if it has suddenly become an incident that is causing issues, you are ahead of the

curve and handling it, with the purpose of resolving within those SLAs. Of course, there

will be sudden incidents that no amount of monitoring can pick up and alert you in

time. Network devices can just pop, and so can servers. Design correctly in the first

place and that shouldn’t cause any undue stress. However, live in the real world with

limited budget and resources, and it will. We will cover how to handle that soon.

17

Knowledge is vital

If your support teams, whether service desk, infrastructure, application or any other

team, don’t have easy access to knowledge base articles that show how to resolve

issues of certain types, then no amount of technology is going to help. Transferring

knowledge to people’s minds is also not going to work. How you address the issue of

the people who don’t want to or won’t share their knowledge is a separate topic

altogether.

Requests

Most service desks have to handle more requests than incidents. That’s good news, on

the whole. However, if they are handling these requests through paperwork and

manual processes, it will delay service delivery and potentially violate SLAs.

The first step to addressing this is to migrate all requests into a request catalog. Not a

service catalog, which details the services IT provides and the SLAs but the request

catalog which details the items that you can request. Very di�erent things.

With the request catalog, you should be able to make it a clickable process, where the

user needs to do as little as possible. If approval is required, set that up in the process

so that the user does not need to send a separate form to a manager in a di�erent

building to get it signed, and then have it sent to the service desk that has no idea

whether the signature is the right one or not and will process it, hoping that they are not

breaking some policy. You could build communication into the workflow of a request

through the catalog, so that the user gets informed where their request is, its reference

number, when to expect the next update, etc.

18

If the user is requesting so�ware, maybe you could look at automated deployment of

the standard applications, so that IT doesn’t need to manually work on the install.

Maybe, for new users, you could have HR approval as part of the process and create an

AD account with all the right access permissions so everything required for a new

employee is ready even before they turn up. This won’t magically happen overnight,

but understanding your constraints and bottlenecks in the request process, and how

long each step takes will enable you to improve the flow of work and deliver more easily

against SLAs.

Going back to a point made earlier about budget and resource constraints, this doesn’t

help provide the level of service that you customers might be a�er. I mentioned about

designing the service correctly in the first place, so that a component failure won’t

impact the services. Well, the realism fairy has just flown into the room. IT may want

resilient hardware but the customer may not be willing to pay for it and yet still want

the same SLA. How do you manage that when something fails? Not easily. However,

communicating during an incident helps. Don’t lay the blame at the customer’s door.

You can’t say, in public, that you wanted to have resilience but they didn’t want to pay

for it. Well, you can, but that won’t help anybody.

What you can do is throw as much resource at the resolution, and make sure you have

knowledge base articles that cover as many scenarios as possible. Make sure the service

design is documented so people understand how it works.

19

Do everything that you realistically can to restore service within SLA. Communicate all

updates as regularly as possible. Then, when service is restored, produce a report that

contains no emotion, and details what needs to happen to reduce the chances of this

happening again. If resilient components will help, mention it, but without dragging up

all the other times you mentioned it. Maybe an outage isn’t as painful as the business

expected and therefore, they don’t want to spend more on the service design. Maybe it

was and they can find the budget to do want needs to be done now. Open and honest,

non-emotional communication will help everyone get a clear understanding of what

needs to happen to move things forward so that either SLAs can be met, or revised to be

more acceptable to all parties.

Breaking information silos
within teams

21

This is one of the trickiest things out there. It’s about the people in the teams and the

culture of the organization, not just tools. Asking people to share knowledge or

information better within teams, in order to break down the silos that have grown over

the years, is hard and cannot be done by one or two individuals. This needs to be driven

from the top. Yes, a team can do this themselves, but as soon as they meet the

immovable force that is “the hero,” it will stop. IT leaders need to make it clear that

those who keep information to themselves help no one and will not be accepted.

They may feel that they are the hero because they have to be called up on to resolve

issues at all hours of the day and night, and even when on leave. They enjoy the need

that people have for them, and then they love to complain about never being allowed

time o�. It’s always someone else’s fault. But they won’t share knowledge because

others can’t be trusted. The only way to stop that is to make it clear that the new heroes

are those who share and collaborate. If people don’t like the need to share knowledge,

then maybe they aren’t the right people for your organization. Do they fit your culture?

They might have done in the past, but if you are wondering how to break this mindset,

then it needs to be acknowledged that they are no longer the right people. It sounds like

your culture has changed, but some people haven’t.

Are these “heroes” really a problem? Well, how o�en does a service restoration get

delayed while you wait for them to be available? If they make themselves available

immediately, what doesn’t get done? Are they holding up projects while fixing issues?

As with anything that we do in business, we have to identify, understand and remove

bottlenecks.

22

How do you do that? Start by explaining to the teams what you are doing and why. Get

the CIO to take part in this and visibly support you. You could experience pushback from

senior managers who like “the hero” because they always fix the manager’s issue

quickly. Not sharing knowledge or information is a risk to IT as well as the business.

Identify why people won’t share knowledge. Is it a trust thing? Is it purely because they

don’t have time? Is it because they don’t realize that they are doing this? Make it clear

that this is no longer a negotiable aspect of their role. Will they leave? Possibly. Will that

hurt IT? Again, possibly. However, experience has shown that IT may hit a few bumps in

the first few weeks of the hero not being available, but everyone steps up and works it

out. No one, unfortunately, is indispensable.

If possible, look at creating scripts, so that the ability to perform certain tasks doesn’t

require permissions for individuals, so it becomes less of a security risk and removes

some of the trust aspect. Maybe you could get the “heroes” to produce carefully

documented knowledge base articles – if this, then that kind of documentation with

screenshots. If they won’t, or can’t do that, get somebody to sit with them and, as part

of their learning exercise, have them produce documentation that is signed o� by the

“hero.” If only certain people in appropriate teams are trained and provided with the

information, and only they are allowed to do the fix with supervision initially, then

alone, this reduces another element of the lack of trust. I was told recently about the 1:3

3:1 principle, where 1 person should be capable of doing three tasks, and three people

should be able to do one task. This adds redundancy to everything being done and

reduces risk.

23

Finally, to share knowledge and increase collaboration, you could consider creating

virtual teams, so that rather than only sys admins being allowed to do certain tasks,

virtual teams can be created for each service or product. The team could be made up of

sys admins, service desk, app support, etc. and when a call for a particular service

comes in, it is assigned to the right virtual team. They could then share knowledge

amongst themselves and become less self-reliant.

While there are plenty of other issues that need to be covered, these are the ones that

commonly hinder operations across organizations. Hopefully, this white paper helps

you break down complexities in your service desk to an extent.

1016

Freshservice is a cloud-based IT service desk and IT service management (ITSM)

solution that is quick to setup and easy to use and manage.

Freshservice leverages ITIL best practices to enable IT organizations to focus on

what’s most important – exceptional service delivery and customer

satisfaction. With its powerfully simple UI, Freshservice can be easily configured

to support your unique business requirements and integrated with other critical

business and IT systems.

Native integrations are provided “out-of-the-box” with many of the most

popular cloud services such as Google Apps, Dropbox, AWS, and Bomgar to

speed up deployment and reach. Freshservice is built on the proven Freshdesk

customers worldwide, including Honda, 3M, Macmillan, Bridgestone, and

Unicef.

About Freshservice

